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Genesis  Genesis: A Compiler for Hamiltonian 
Simulation on Hybrid CV-DV Quantum 
Computers

Genesis is a compiler framework for Hamiltonian simulation 
targeting hybrid continuous-variable (CV) and discrete-variable 
(DV) quantum systems. 
It supports multi-level logical circuit compilation, Hybrid CV-DV 
domain-specific language (DSL), and hardware circuit mapping 
and routing.



Genesis  Collaborative Work(Rutgers & NCSU)
● To appear in ISCA ’25: Zihan Chen*, Jiakang Li*, Minghao 

Guo*, Henry Chen, Zirui Li, Joel Bierman, Yipeng Huang, 
Huiyang Zhou, Yuan Liu, and Eddy Z. Zhang. 2025. 
Genesis: A Compiler for Hamiltonian Simulation on Hybrid 
CV-DV Quantum Computers. In Proceedings of the 52nd 
Annual International Symposium on Computer Architecture 
(ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New 
York, NY, USA, 15 pages. 
https://doi.org/10.1145/3695053.3731065

● arXiv preprint:2505.13683, 2025
● Software access: 

https://github.com/ruadapt/Genesis-CVDV-Compiler

Preprint: Code:
3



4

1. Background and Motivation

2. Domain Specific Language Design

3. Logical Circuit Synthesis

4. Physical Circuit Mapping

5. End-to-end Implementation

Genesis  



1.1 Hybrid CV-DV Background
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• Most current quantum machines use qubits that are discrete-variable (DV) systems 
– essentially two-state quantum systems. 

• In contrast, a continuous-variable (CV) quantum system (qumode) has a spectrum 
of many possible states, theoretically an infinite continuum of states. It can retain 
more robust quantum states and has the potential to achieve excellent quantum 
error correction.

• CV-only hardware is limited to generate non-Gaussian resources.
• DV-only hardware needs truncation for simulating CV states, also it is difficult to 

simulate native bosonic operators.
• Hybrid CV-DV hardware takes the best of both system and is well-suited for the 

physical simulation with fermion-boson mixtures
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Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures, 
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2 

1.1 Hybrid CV-DV Background
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1.2 Hamiltonian Simulation Background

• Hamiltonian Simulation is a “killer” quantum computing application currently

• Hamiltonian Simulation could unlock insights into chemistry, physics, and 

materials science.

• Fermions → discrete states → qubits (DV)

• Bosons → continuous/infinite states → qumodes (CV)
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• Hybrid CV-DV hardware takes the best of both system and is well-suited for 

the physical simulation with fermion-boson mixtures

• However, compiler and programming systems are largely undeveloped for 

hybrid CV-DV systems. 

• Fermion-Boson mixtures interactions have not been thoroughly investigated, 

Genesis tries to bridge this gap and offers a complete end-to-end 

hamiltonian simulation compilation support!

1.2 Hamiltonian Simulation Background



1.3 Challenges and Motivation
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1. Complex Cross-Domain Problem
• Hamiltonian Grammar(DSL) and Multi-level Compilation

2. Qumode-centric Gate Synthesis
• Rule-Based Recursive Template Matching

3. Multi-qubit Pauli-string Synthesis
• Traveling Ancilla Qumode 

4. Limited Connectivity Constraints
• Hybrid CVDV Hardware Mapping and Routing



2.1 Hamiltonian Grammar
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Hamiltonian Model Example:

Corresponds Hamiltonian Grammar Representation:



2.2 CVDVQASM and Multi-level Compilation
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1. Hamiltonian Formula 2. Hamiltonian Grammar

3. Intermediate Representation4. Logical CVDVQASM file5. Physical CVDVQASM file



3.1 Direct Qumode-centric Gate Synthesis
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3.2 Product Formula and Block Encoding
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• Trotterization(Trotter-Suzuki formula)

• Block Encoding

• BCH(Baker Campbell Hausdorff formula)

• Commutator [A, B] and anticommutator σz{A, B} implementation in CVDV architecture

Source: "Leveraging Hamiltonian Simulation Techniques to Compile Operations 
on Bosonic Devices." Kang, Christopher, et al. arXiv:2303.15542
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[20] "Leveraging Hamiltonian Simulation Techniques to Compile 
Operations on Bosonic Devices." Kang, Christopher, et al. arXiv:2303.15542

3.3 Rule-Based Recursive Template Matching
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3.3 Rule-Based Recursive Template Matching

Decomposition
Rules Set

Basic Gates Set

Repeat the rewrite 
process until it 
produces only 
basis gates

Basic Gates Sequence
(Logical CVDVQASM Circuit)



3.4 Multi-qubit Pauli-string Synthesis
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• Qubits are not directly connected with each other, we propose a scheme to 
synthesize an arbitrary multi-qubit Pauli-string on Hybrid CV-DV platforms.

• It is inspired by phase kickback in DV systems, where the phase of the control qubit 
is influenced by the operation on the target qubits.



3.4 Multi-qubit Pauli-string Synthesis
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• Our final multi-Pauli exponential decomposition makes use of a multi-qubit controlled 
CD gate proposed by Liu et al., as below:

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures, 
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2 



4.1 Limited Hardware Connectivity
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• Qumode-qumode Mapping. 
Interactions are limited to adjacent qumodes. For non-adjacent 
qumodes, qumode SWAP gates are used, with routing 
optimized to minimize such SWAPs. 

• Qubit-qumode Mapping. 
Each qumode interacts only with its associated qubit. For 
interactions with other qumodes, adjacency is established by 
moving qumodes, similar to qumode-qumode mapping. 

• Qubit-qubit Mapping. 
Qubits interact indirectly via an ancilla qumode, which is moved 
between qubits to mediate interactions and complete gate 
operations.

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures, 
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2 



4.1 Limited Hardware Connectivity
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• Qumode-qumode Mapping. 
Interactions are limited to adjacent qumodes. For 
non-adjacent qumodes, qumode SWAP gates are used, 
with routing optimized to minimize such SWAPs. 

• Qubit-qumode Mapping. 
Each qumode interacts only with its associated qubit. For 
interactions with other qumodes, adjacency is established 
by moving qumodes, similar to qumode-qumode mapping. 

Working Frontier: all unresolved gates whose 
dependence has been resolved
Using a Qiskit Sabre-like reward function to 
execute gate from the frontier and update it.

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures, 
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2 



4.2 Optimized Ancilla Qumode Routing
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A → B → V → D: 4 BS gates

D → C → A → B: 3 BS gates

The Optimized Ancilla Qumode Routing 
Problem can be reformulated as a relaxed 
Hamiltonian Path Problem, similar to a 
modified Traveling Salesman Problem (TSP). 
Unlike the closed-path TSP, this problem 
allows revisiting vertices and does not require 
returning to the starting vertex.



4.2 Optimized Ancilla Qumode Routing
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Qumode-SWAP
1 Beam-Splitter gate
(20x depth/duration)

Qubit-SWAP
(in CVDV System)

12 control displacement gates
12 Qumode-SWAPs

(480x depth/duration)

● Dynamic Qubit Floating

Relocation strategy, when a qubit-qubit pair distance 
in a specific multi-qubit exponential is too far, and this 
qubit-qubit pair appear often in the following 
multi-qubit exponential, we will try to relocate the 
qubit using Qubit-SWAP to cluster them.



4.2 Optimized Ancilla Qumode Routing

22

● Christofides Algorithm

Baseline

● Threshold Accepting Algorithm

3-7% better duration time, 4.8% in avg

● Dynamic Qubit Floating

6% worse duration time in avg

4/20 better than baseline and 2/20 better 

than Threshold Accepting 



5. End-to-end Implementation
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1. Hamiltonian Parsing: Translates a Hamiltonian from mathematical form 
into a DSL-based representation.

2. Intermediate Representation (IR): Converts the DSL into an IR 
consisting of Pauli strings and operator expressions(bosonic, hybrid).

3. Pattern Matching and Gate Synthesis: Matches fermionic and bosonic 
operator terms and synthesizes them into logical CV-DV circuits in 
CVDVQASM format.

4. Physical Mapping: Maps logical circuits and Pauli terms to 
hardware-compliant physical circuits, and outputs the final(physical) 
CVDVQASM program(s).



5. End-to-end Implementation
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• Evaluation 1. Multi Pauli-String Synthesis
• 20 Qubit Hamiltonian such as LiH(4,12), BeH2(6,14) … 
• # Pauli Strings from 631 to 1884
• JW and BK encoding

• Evaluation 2. General Hamiltonian Simulation Compilation
• 6 Hamiltonian Models such as Hubbard-Holstein Model, Bose-Hubbard 

Model … At most 60 Qubits and 120 Qumodes



5. End-to-end Implementation
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• Intermediate Tools 1. CVDV Mapping and Routing
• Support more architecture(neutral atom)
• Better relocate strategy when compile multi pauli-strings

• Intermediate Tools 2. Operator Pattern Matching
• Flexible customize rules and multiple decomposition perspectives
• Better compilation efficiency and robustness
• Error analysis and unitary verification



Thank You!
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