
Genesis: A Hybrid CV-DV Compiler
for Hamiltonian Simulation

Zihan Chen*,1, Jiakang Li*,1, Minghao Guo*,1

 Henry Chen1, Zirui Li1, Joel Bierman2, Yipeng Huang1, Huiyang Zhou2, Yuan Liu2, Eddy Z. Zhang1

1Rutgers University 2North Carolina State University
*Denotes Equal Contribution

“Nature isn’t classical, dammit, and if you want to make a simulation of
Nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem because it doesn’t look so easy.”

R. P. Feynman, 1981

Introduction - Simulation of Nature

A quantum computer can simulate efficiently any physical
process that occurs in Nature.

(Maybe. We don’t actually know for sure.) - John Preskill

particle
collision

entangled
electrons

molecular
chemistry

black hole early universesuperconductor

Introduction- Capability of Quantum Computer

High-Energy Physics

Hamiltonian Simulation

 Quantum Chemistry Material Science

Molecular Biology Drug Discovery

4

Hamiltonian Simulation

● Hamiltonian Simulation is a “killer”

quantum computing application

currently

Hybrid CVDV Background
● Most current quantum machines use qubits that are discrete-variable

(DV) systems – which is quite fit to simulate the Fermions with Discrete
states .

● In contrast, Bosons have continuous/infite states, and a
continuous-variable (CV) quantum system (qumode) which has a
spectrum of many possible states, is fit to simulate the Bosonic system.
It can retain more robust quantum states and has the potential to
achieve excellent quantum error correction.

● CV-only hardware is challenging to have non-Gaussian resources.
● DV-only hardware needs truncation for simulating CV states, also it is

difficult to simulate native bosonic operators.
● Hybrid CV-DV hardware takes the best of both system and is

well-suited for the physical simulation with fermion-boson mixtures

Hybrid CVDV Background

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures,
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2

Hybrid CVDV Background

● Hybrid CV-DV hardware takes the best of both system and is well-suited for

the physical simulation with fermion-boson mixtures

● However, compiler and programming systems are largely undeveloped for

hybrid CV-DV systems.

● Fermion-Boson mixtures interactions have not been thoroughly investigated,

Genesis tries to bridge this gap and offers a complete end-to-end

hamiltonian simulation compilation support!

Challenges and Motivation

1. Complex Cross-Domain Problem
○ Domain Specific Language (DSL) Hamiltonian Grammar and Multi-level

Compilation

2. Qumode-centric Gate Synthesis
○ Rule-Based Recursive Template Matching

3. Multi-qubit Pauli-string Synthesis
○ Traveling Ancilla Qumode

4. Limited Connectivity Constraints
○ Hybrid CVDV Hardware Mapping and Routing

Hamiltonian Grammar DSL Representation

Hamiltonian Model Example:

Corresponding Example Hamiltonian Grammar Representation:

CVDVQASM and Multi-level Compilation

1. Hamiltonian Formula 2. Hamiltonian Grammar

3. Intermediate Representation

4. Logical CVDVQASM file5. Physical CVDVQASM file

Direct Qumode-centric Gate Synthesis

Quantum Algorithms Define Compiler Rules: Operator
Decomposition in CV-DV Systems

• BCH(Baker Campbell Hausdorff formula)

• Block Encoding

• Commutator σz[A, B] and anticommutator σz{A, B} implementation in CVDV
architecture

Source: "Leveraging Hamiltonian Simulation Techniques to Compile Operations
on Bosonic Devices." Kang, Christopher, et al. arXiv:2303.15542

• Trotterization(Trotter-Suzuki formula)

Rule-Based Recursive Template Matching

[20] "Leveraging Hamiltonian Simulation Techniques to Compile
Operations on Bosonic Devices." Kang, Christopher, et al. arXiv:2303.15542

Rule-Based Recursive Template Matching
Basic Gates Set

Decomposition
Rules Set

Basic Gates Sequence
(Logical CVDVQASM Circuit)

Repeat the rewrite
process until it
produces only
basis gates

● Qubits are not directly connected with each other, we propose a scheme to
synthesize an arbitrary multi-qubit Pauli-string on Hybrid CV-DV platforms.

● It is inspired by phase kickback in DV systems, where the phase of the control qubit
is influenced by the operation on the target qubits.

Multi-qubit Pauli-string Synthesis

● Our final multi-Pauli exponential decomposition makes use of a multi-qubit controlled
CD gate proposed by Liu et al., as below:

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures,
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2

Multi-qubit Pauli-string Synthesis

Limited Hardware Connectivity

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures,
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2

● Qumode-qumode Mapping.
Interactions are limited to adjacent qumodes. For non-adjacent
qumodes, qumode SWAP gates are used, with routing
optimized to minimize such SWAPs.

● Qubit-qumode Mapping.
Each qumode interacts only with its associated qubit. For
interactions with other qumodes, adjacency is established by
moving qumodes, similar to qumode-qumode mapping.

● Qubit-qubit Mapping.
Qubits interact indirectly via an ancilla qumode, which is moved
between qubits to mediate interactions and complete gate
operations.

Limited Hardware Connectivity

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures,
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2

● Qumode-qumode Mapping.
Interactions are limited to adjacent qumodes. For non-adjacent
qumodes, qumode SWAP gates are used, with routing
optimized to minimize such SWAPs.

● Qubit-qumode Mapping.
Each qumode interacts only with its associated qubit. For
interactions with other qumodes, adjacency is established by
moving qumodes, similar to qumode-qumode mapping.

Working Frontier: all unresolved gates whose
dependence has been resolved

Using a Qiskit Sabre-like reward function to execute
gate from the frontier and update it.

Optimized Ancilla Qumode Routing
A → B → (A) → C → D: 4 BS gates

D → C → A → B: 3 BS gates

The Optimized Ancilla Qumode Routing
Problem can be reformulated as a relaxed
Hamiltonian Path Problem, similar to a
modified Traveling Salesman Problem (TSP).
Unlike the closed-path TSP, this problem
allows revisiting vertices and does not require
returning to the starting vertex.

Optimized Ancilla Qumode Routing

Qumode-SWAP
1 Beam-Splitter gate
(20x depth/duration)

Qubit-SWAP

(in CVDV System)
12 control displacement gates

12 Qumode-SWAPs

(480x depth/duration)

● Dynamic Qubit Floating

Relocation strategy, when a qubit-qubit pair distance
in a specific multi-qubit exponential is too far, and this
qubit-qubit pair appear often in the following
multi-qubit exponential, we will try to relocate the
qubit using Qubit-SWAP to cluster them.

Source: “Hybrid Oscillator-Qubit Quantum Processors: Instruction Set Architectures,
Abstract Machine Models, and Applications.” Liu et al. arXiv 2407.10381v2

Optimized Ancilla Qumode Routing

● Christofides Algorithm

Baseline

● Threshold Accepting Algorithm

3-7% better duration time, 4.8% in avg

● Dynamic Qubit Floating

6% worse duration time in avg

4/20 better than baseline and 2/20 better

than Threshold Accepting

End to End Implementation
1. Hamiltonian Parsing: Translates a Hamiltonian from mathematical form into a DSL-based representation.
2. Intermediate Representation (IR): Converts the DSL into an IR consisting of Pauli strings and operator

expressions(bosonic, hybrid).
3. Pattern Matching and Gate Synthesis: Matches fermionic and bosonic operator terms and synthesizes

them into logical CV-DV circuits in CVDVQASM format.
4. Physical Mapping: Maps logical circuits and Pauli terms to hardware-compliant physical circuits, and

outputs the final(physical) CVDVQASM program(s).
 Software access:

https://github.com/ruadapt/
Genesis-CVDV-Compiler

GitHub QR Code:

End to End Implementation

● Evaluation 1. Multi Pauli-String Synthesis

○ 20 Qubit Hamiltonian such as LiH(4,12), BeH2(6,14) …

○ # Pauli Strings from 631 to 1884

○ JW and BK encoding

● Evaluation 2. General Hamiltonian Simulation Compilation

○ 6 Hamiltonian Models such as Hubbard-Holstein Model, Bose-Hubbard Model … At most 60
Qubits and 120 Qumodes

End to End Implementation-in the future

● Intermediate Tools 1. CVDV Mapping and Routing
○ Support more architecture(neutral atom)

○ Better relocate strategy when compile multi pauli-strings

● Intermediate Tools 2. Operator Pattern Matching
○ Flexible customize rules and multiple decomposition perspectives

○ Better compilation efficiency and robustness

○ Error analysis and unitary verification

Codes Available

 Welcome to give it a try!
 Software access:

https://github.com/ruadapt/Genesis-CVDV-Compiler

GitHub Link:

Thank You!

